New observational evidence of global seismic effects of basin-forming impacts on the Moon from Lunar Reconnaissance Orbiter Lunar Orbiter Laser Altimeter data
نویسندگان
چکیده
[1] New maps of kilometer-scale topographic roughness and concavity of the Moon reveal a very distinctive roughness signature of the proximal ejecta deposits of the Orientale basin (the Hevelius Formation). No other lunar impact basin, even the just-preceding Imbrium basin, is characterized by this type of signature although most have similar types of ejecta units and secondary crater structures. The preservation of this distinctive signature, and its lack in basins formed prior to Orientale, is interpreted to be the result of seismically induced smoothing caused by this latest major basin-forming event. Intense seismic waves accompanying the Orientale basin-forming event preceded the emplacement of its ejecta in time and operated to shake and smooth steep and rough topography associated with earlier basin deposits such as Imbrium. Orientale ejecta emplaced immediately following the passage of the seismic waves formed the distinctive roughness signature that has been preserved for almost 4 billion years.
منابع مشابه
The steepest slopes on the Moon from Lunar Orbiter Laser Altimeter (LOLA) Data: Spatial Distribution and Correlation with Geologic Features
We calculated topographic gradients over the surface of the Moon at a 25 m baseline using data obtained by the Lunar Orbiter Laser Altimeter (LOLA) instrument onboard the Lunar Reconnaissance Orbiter (LRO) spacecraft. The relative spatial distribution of steep slopes can be reliably obtained, although some technical characteristics of the LOLA dataset preclude statistical studies of slope orien...
متن کاملLunar topographic roughness maps from Lunar Orbiter Laser Altimeter (LOLA) data: Scale dependence and correlation with geologic features and units
We present maps of the topographic roughness of the Moon at hectometer and kilometer scales. The maps are derived from range profiles obtained by the Lunar Orbiter Laser Altimeter (LOLA) instrument onboard the Lunar Reconnaissance Orbiter (LRO) spacecraft. As roughness measures, we used the interquartile range of profile curvature at several baselines, from 115 m to 1.8 km, and plotted these in...
متن کاملLunar impact basins: Stratigraphy, sequence and ages from superposed impact crater populations measured from Lunar Orbiter Laser Altimeter (LOLA) data
[1] Impact basin formation is a fundamental process in the evolution of the Moon and records the history of impactors in the early solar system. In order to assess the stratigraphy, sequence, and ages of impact basins and the impactor population as a function of time, we have used topography from the Lunar Orbiter Laser Altimeter (LOLA) on the Lunar Reconnaissance Orbiter (LRO) to measure the s...
متن کاملGlobal surface slopes and roughness of the Moon from the Lunar Orbiter Laser Altimeter
[1] The acquisition of new global elevation data from the Lunar Orbiter Laser Altimeter, carried on the Lunar Reconnaissance Orbiter, permits quantification of the surface roughness properties of the Moon at unprecedented scales and resolution. We map lunar surface roughness using a range of parameters: median absolute slope, both directional (along‐track) and bidirectional (in two dimensions);...
متن کاملThe transition from complex craters to multi-ring basins on the Moon: Quantitative geometric properties from Lunar Reconnaissance Orbiter Lunar Orbiter Laser Altimeter (LOLA) data
[1] The morphologic transition from complex impact craters, to peak-ring basins, and to multi-ring basins has been well-documented for decades. Less clear has been the morphometric characteristics of these landforms due to their large size and the lack of global high-resolution topography data. We use data from the Lunar Orbiter Laser Altimeter (LOLA) instrument onboard the Lunar Reconnaissance...
متن کامل